Main Article Content

Abstract

Climate change seems to be the most phytotoxic of all global changes. One of its most subtle impacts on plants development is on their reproductive processes. There has been very little work directed towards agrobiodiversity, and especially subsistence and cash crops in highland ecosystems. An understanding of the effects of climate change on the yield of such crops could contribute to the sustainable management of such ecosystems to avoid degradation and subsequent increases in poverty and hunger. This cross-sectional study assesses the trends and effects of climate change on the reproductive processes of plant species within rainfed agricultural systems in the Bamenda Highlands of Cameroon, together with community resilience. Twenty-four-year climatic data (1991 – 2015) and crop yield statistic over the same period constituted our secondary data sources. Primary data from field observations and focus group interviews with some 140 farmers complemented our database. Multiple regression analysis was used to test if rainfall and temperature significantly predicted crop yield. Community resilience was captured using ten indicators of social-ecological resilience in four domains. The results showed that, for the subsistence crops, the main effect of temperature on yield was significant, F (2, 23) = 7.91, MSE = 23.20, p < .01, as was the main effect of precipitation, F (2, 23) = 12.70, MSE = 23.20, p < .01. Declining yields have led to high prices of food items in the market, undermining food security. On the contrary, the two predictors of crop yield explained only 16.4% of the variance in cash crop yield (R2=.164, F (2, 21) = 2.065, p = .152). Neither rainfall (ß = .296, p = .236) nor temperature (ß =.-177.013, p = .233) significantly predicted cash crop yield (tea) yield, suggesting that decline in production could be as a result of estraneous variables such as the political environment and inadequate agricultural inputs. Consensus scores and trends for the indicators of social-ecological resilience ranged from low to medium, indicating a rather weak capacity of communities to cope with external stresses and disturbances. Cash-crop intensification, a driver of biodiversity loss elsewhere, did not negatively affect native tree richness within parcels. The result suggests a need to open up procedures and practices of participation and inclusion in order to accommodate pluralism, contestation and incommensurable perspectives and knowledge systems. Joining efforts to build community resilience, specifically by increasing livelihood diversity, local ecological knowledge, and social network connectivity, may help conservation agencies conserve the rapidly declining agrobiodiversity in the region.

Article Details

How to Cite
Mbue, I. N., Dieudonne, B., & Azibo, R. B. (2019). Crop Yield Response and Community Resilience to Climate Change in the Bamenda Highlands. Thematics Journal of Geography, 8(8), 31-41. Retrieved from https://thematicsjournals.org/index.php/tjg/article/view/8129